Module aws_lambda_powertools.utilities.batch.base
Batch processing utilities
Expand source code
# -*- coding: utf-8 -*-
"""
Batch processing utilities
"""
import copy
import logging
import sys
from abc import ABC, abstractmethod
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union, overload
from aws_lambda_powertools.middleware_factory import lambda_handler_decorator
from aws_lambda_powertools.utilities.batch.exceptions import BatchProcessingError, ExceptionInfo
from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord
from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord
from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord
logger = logging.getLogger(__name__)
class EventType(Enum):
SQS = "SQS"
KinesisDataStreams = "KinesisDataStreams"
DynamoDBStreams = "DynamoDBStreams"
#
# type specifics
#
has_pydantic = "pydantic" in sys.modules
# For IntelliSense and Mypy to work, we need to account for possible SQS, Kinesis and DynamoDB subclasses
# We need them as subclasses as we must access their message ID or sequence number metadata via dot notation
if has_pydantic:
from aws_lambda_powertools.utilities.parser.models import DynamoDBStreamRecordModel
from aws_lambda_powertools.utilities.parser.models import KinesisDataStreamRecord as KinesisDataStreamRecordModel
from aws_lambda_powertools.utilities.parser.models import SqsRecordModel
BatchTypeModels = Optional[
Union[Type[SqsRecordModel], Type[DynamoDBStreamRecordModel], Type[KinesisDataStreamRecordModel]]
]
# When using processor with default arguments, records will carry EventSourceDataClassTypes
# and depending on what EventType it's passed it'll correctly map to the right record
# When using Pydantic Models, it'll accept any subclass from SQS, DynamoDB and Kinesis
EventSourceDataClassTypes = Union[SQSRecord, KinesisStreamRecord, DynamoDBRecord]
BatchEventTypes = Union[EventSourceDataClassTypes, "BatchTypeModels"]
SuccessResponse = Tuple[str, Any, BatchEventTypes]
FailureResponse = Tuple[str, str, BatchEventTypes]
class BasePartialProcessor(ABC):
"""
Abstract class for batch processors.
"""
def __init__(self):
self.success_messages: List[BatchEventTypes] = []
self.fail_messages: List[BatchEventTypes] = []
self.exceptions: List[ExceptionInfo] = []
@abstractmethod
def _prepare(self):
"""
Prepare context manager.
"""
raise NotImplementedError()
@abstractmethod
def _clean(self):
"""
Clear context manager.
"""
raise NotImplementedError()
@abstractmethod
def _process_record(self, record: dict):
"""
Process record with handler.
"""
raise NotImplementedError()
def process(self) -> List[Tuple]:
"""
Call instance's handler for each record.
"""
return [self._process_record(record) for record in self.records]
def __enter__(self):
self._prepare()
return self
def __exit__(self, exception_type, exception_value, traceback):
self._clean()
def __call__(self, records: List[dict], handler: Callable):
"""
Set instance attributes before execution
Parameters
----------
records: List[dict]
List with objects to be processed.
handler: Callable
Callable to process "records" entries.
"""
self.records = records
self.handler = handler
return self
def success_handler(self, record, result: Any) -> SuccessResponse:
"""
Keeps track of batch records that were processed successfully
Parameters
----------
record: Any
record that succeeded processing
result: Any
result from record handler
Returns
-------
SuccessResponse
"success", result, original record
"""
entry = ("success", result, record)
self.success_messages.append(record)
return entry
def failure_handler(self, record, exception: ExceptionInfo) -> FailureResponse:
"""
Keeps track of batch records that failed processing
Parameters
----------
record: Any
record that failed processing
exception: ExceptionInfo
Exception information containing type, value, and traceback (sys.exc_info())
Returns
-------
FailureResponse
"fail", exceptions args, original record
"""
exception_string = f"{exception[0]}:{exception[1]}"
entry = ("fail", exception_string, record)
logger.debug(f"Record processing exception: {exception_string}")
self.exceptions.append(exception)
self.fail_messages.append(record)
return entry
@lambda_handler_decorator
def batch_processor(
handler: Callable, event: Dict, context: Dict, record_handler: Callable, processor: BasePartialProcessor
):
"""
Middleware to handle batch event processing
Parameters
----------
handler: Callable
Lambda's handler
event: Dict
Lambda's Event
context: Dict
Lambda's Context
record_handler: Callable
Callable to process each record from the batch
processor: PartialSQSProcessor
Batch Processor to handle partial failure cases
Examples
--------
**Processes Lambda's event with PartialSQSProcessor**
>>> from aws_lambda_powertools.utilities.batch import batch_processor, PartialSQSProcessor
>>>
>>> def record_handler(record):
>>> return record["body"]
>>>
>>> @batch_processor(record_handler=record_handler, processor=PartialSQSProcessor())
>>> def handler(event, context):
>>> return {"StatusCode": 200}
Limitations
-----------
* Async batch processors
"""
records = event["Records"]
with processor(records, record_handler):
processor.process()
return handler(event, context)
class BatchProcessor(BasePartialProcessor):
"""Process native partial responses from SQS, Kinesis Data Streams, and DynamoDB.
Example
-------
## Process batch triggered by SQS
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.SQS)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: SQSRecord):
payload: str = record.body
if payload:
item: dict = json.loads(payload)
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
@batch_processor(record_handler=record_handler, processor=processor)
def lambda_handler(event, context: LambdaContext):
return processor.response()
```
## Process batch triggered by Kinesis Data Streams
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.KinesisDataStreams)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: KinesisStreamRecord):
logger.info(record.kinesis.data_as_text)
payload: dict = record.kinesis.data_as_json()
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
@batch_processor(record_handler=record_handler, processor=processor)
def lambda_handler(event, context: LambdaContext):
return processor.response()
```
## Process batch triggered by DynamoDB Data Streams
```python
import json
from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor
from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord
from aws_lambda_powertools.utilities.typing import LambdaContext
processor = BatchProcessor(event_type=EventType.DynamoDBStreams)
tracer = Tracer()
logger = Logger()
@tracer.capture_method
def record_handler(record: DynamoDBRecord):
logger.info(record.dynamodb.new_image)
payload: dict = json.loads(record.dynamodb.new_image.get("item").s_value)
# alternatively:
# changes: Dict[str, dynamo_db_stream_event.AttributeValue] = record.dynamodb.new_image # noqa: E800
# payload = change.get("Message").raw_event -> {"S": "<payload>"}
...
@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event, context: LambdaContext):
batch = event["Records"]
with processor(records=batch, processor=processor):
processed_messages = processor.process() # kick off processing, return list[tuple]
return processor.response()
```
Raises
------
BatchProcessingError
When all batch records fail processing
"""
DEFAULT_RESPONSE: Dict[str, List[Optional[dict]]] = {"batchItemFailures": []}
def __init__(self, event_type: EventType, model: Optional["BatchTypeModels"] = None):
"""Process batch and partially report failed items
Parameters
----------
event_type: EventType
Whether this is a SQS, DynamoDB Streams, or Kinesis Data Stream event
model: Optional["BatchTypeModels"]
Parser's data model using either SqsRecordModel, DynamoDBStreamRecordModel, KinesisDataStreamRecord
Exceptions
----------
BatchProcessingError
Raised when the entire batch has failed processing
"""
self.event_type = event_type
self.model = model
self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE)
self._COLLECTOR_MAPPING = {
EventType.SQS: self._collect_sqs_failures,
EventType.KinesisDataStreams: self._collect_kinesis_failures,
EventType.DynamoDBStreams: self._collect_dynamodb_failures,
}
self._DATA_CLASS_MAPPING = {
EventType.SQS: SQSRecord,
EventType.KinesisDataStreams: KinesisStreamRecord,
EventType.DynamoDBStreams: DynamoDBRecord,
}
super().__init__()
def response(self):
"""Batch items that failed processing, if any"""
return self.batch_response
def _prepare(self):
"""
Remove results from previous execution.
"""
self.success_messages.clear()
self.fail_messages.clear()
self.exceptions.clear()
self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE)
def _process_record(self, record: dict) -> Union[SuccessResponse, FailureResponse]:
"""
Process a record with instance's handler
Parameters
----------
record: dict
A batch record to be processed.
"""
data = self._to_batch_type(record=record, event_type=self.event_type, model=self.model)
try:
result = self.handler(record=data)
return self.success_handler(record=record, result=result)
except Exception:
return self.failure_handler(record=data, exception=sys.exc_info())
def _clean(self):
"""
Report messages to be deleted in case of partial failure.
"""
if not self._has_messages_to_report():
return
if self._entire_batch_failed():
raise BatchProcessingError(
msg=f"All records failed processing. {len(self.exceptions)} individual errors logged "
f"separately below.",
child_exceptions=self.exceptions,
)
messages = self._get_messages_to_report()
self.batch_response = {"batchItemFailures": messages}
def _has_messages_to_report(self) -> bool:
if self.fail_messages:
return True
logger.debug(f"All {len(self.success_messages)} records successfully processed")
return False
def _entire_batch_failed(self) -> bool:
return len(self.exceptions) == len(self.records)
def _get_messages_to_report(self) -> List[Dict[str, str]]:
"""
Format messages to use in batch deletion
"""
return self._COLLECTOR_MAPPING[self.event_type]()
# Event Source Data Classes follow python idioms for fields
# while Parser/Pydantic follows the event field names to the latter
def _collect_sqs_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.messageId if self.model else msg.message_id
failures.append({"itemIdentifier": msg_id})
return failures
def _collect_kinesis_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.kinesis.sequenceNumber if self.model else msg.kinesis.sequence_number
failures.append({"itemIdentifier": msg_id})
return failures
def _collect_dynamodb_failures(self):
failures = []
for msg in self.fail_messages:
msg_id = msg.dynamodb.SequenceNumber if self.model else msg.dynamodb.sequence_number
failures.append({"itemIdentifier": msg_id})
return failures
@overload
def _to_batch_type(self, record: dict, event_type: EventType, model: "BatchTypeModels") -> "BatchTypeModels":
... # pragma: no cover
@overload
def _to_batch_type(self, record: dict, event_type: EventType) -> EventSourceDataClassTypes:
... # pragma: no cover
def _to_batch_type(self, record: dict, event_type: EventType, model: Optional["BatchTypeModels"] = None):
if model is not None:
return model.parse_obj(record)
return self._DATA_CLASS_MAPPING[event_type](record)
Functions
def batch_processor(handler: Callable, event: Dict[~KT, ~VT], context: Dict[~KT, ~VT], record_handler: Callable, processor: BasePartialProcessor)
-
Middleware to handle batch event processing
Parameters
handler
:Callable
- Lambda's handler
event
:Dict
- Lambda's Event
context
:Dict
- Lambda's Context
record_handler
:Callable
- Callable to process each record from the batch
processor
:PartialSQSProcessor
- Batch Processor to handle partial failure cases
Examples
Processes Lambda's event with PartialSQSProcessor
>>> from aws_lambda_powertools.utilities.batch import batch_processor, PartialSQSProcessor >>> >>> def record_handler(record): >>> return record["body"] >>> >>> @batch_processor(record_handler=record_handler, processor=PartialSQSProcessor()) >>> def handler(event, context): >>> return {"StatusCode": 200}
Limitations
- Async batch processors
Expand source code
@lambda_handler_decorator def batch_processor( handler: Callable, event: Dict, context: Dict, record_handler: Callable, processor: BasePartialProcessor ): """ Middleware to handle batch event processing Parameters ---------- handler: Callable Lambda's handler event: Dict Lambda's Event context: Dict Lambda's Context record_handler: Callable Callable to process each record from the batch processor: PartialSQSProcessor Batch Processor to handle partial failure cases Examples -------- **Processes Lambda's event with PartialSQSProcessor** >>> from aws_lambda_powertools.utilities.batch import batch_processor, PartialSQSProcessor >>> >>> def record_handler(record): >>> return record["body"] >>> >>> @batch_processor(record_handler=record_handler, processor=PartialSQSProcessor()) >>> def handler(event, context): >>> return {"StatusCode": 200} Limitations ----------- * Async batch processors """ records = event["Records"] with processor(records, record_handler): processor.process() return handler(event, context)
Classes
class BasePartialProcessor
-
Abstract class for batch processors.
Expand source code
class BasePartialProcessor(ABC): """ Abstract class for batch processors. """ def __init__(self): self.success_messages: List[BatchEventTypes] = [] self.fail_messages: List[BatchEventTypes] = [] self.exceptions: List[ExceptionInfo] = [] @abstractmethod def _prepare(self): """ Prepare context manager. """ raise NotImplementedError() @abstractmethod def _clean(self): """ Clear context manager. """ raise NotImplementedError() @abstractmethod def _process_record(self, record: dict): """ Process record with handler. """ raise NotImplementedError() def process(self) -> List[Tuple]: """ Call instance's handler for each record. """ return [self._process_record(record) for record in self.records] def __enter__(self): self._prepare() return self def __exit__(self, exception_type, exception_value, traceback): self._clean() def __call__(self, records: List[dict], handler: Callable): """ Set instance attributes before execution Parameters ---------- records: List[dict] List with objects to be processed. handler: Callable Callable to process "records" entries. """ self.records = records self.handler = handler return self def success_handler(self, record, result: Any) -> SuccessResponse: """ Keeps track of batch records that were processed successfully Parameters ---------- record: Any record that succeeded processing result: Any result from record handler Returns ------- SuccessResponse "success", result, original record """ entry = ("success", result, record) self.success_messages.append(record) return entry def failure_handler(self, record, exception: ExceptionInfo) -> FailureResponse: """ Keeps track of batch records that failed processing Parameters ---------- record: Any record that failed processing exception: ExceptionInfo Exception information containing type, value, and traceback (sys.exc_info()) Returns ------- FailureResponse "fail", exceptions args, original record """ exception_string = f"{exception[0]}:{exception[1]}" entry = ("fail", exception_string, record) logger.debug(f"Record processing exception: {exception_string}") self.exceptions.append(exception) self.fail_messages.append(record) return entry
Ancestors
- abc.ABC
Subclasses
Methods
def failure_handler(self, record, exception: Tuple[Optional[Type[BaseException]], Optional[BaseException], Optional[traceback]]) ‑> Tuple[str, str, Union[SQSRecord, KinesisStreamRecord, DynamoDBRecord, BatchTypeModels]]
-
Keeps track of batch records that failed processing
Parameters
record
:Any
- record that failed processing
exception
:ExceptionInfo
- Exception information containing type, value, and traceback (sys.exc_info())
Returns
FailureResponse
- "fail", exceptions args, original record
Expand source code
def failure_handler(self, record, exception: ExceptionInfo) -> FailureResponse: """ Keeps track of batch records that failed processing Parameters ---------- record: Any record that failed processing exception: ExceptionInfo Exception information containing type, value, and traceback (sys.exc_info()) Returns ------- FailureResponse "fail", exceptions args, original record """ exception_string = f"{exception[0]}:{exception[1]}" entry = ("fail", exception_string, record) logger.debug(f"Record processing exception: {exception_string}") self.exceptions.append(exception) self.fail_messages.append(record) return entry
def process(self) ‑> List[Tuple[]]
-
Call instance's handler for each record.
Expand source code
def process(self) -> List[Tuple]: """ Call instance's handler for each record. """ return [self._process_record(record) for record in self.records]
def success_handler(self, record, result: Any) ‑> Tuple[str, Any, Union[SQSRecord, KinesisStreamRecord, DynamoDBRecord, BatchTypeModels]]
-
Keeps track of batch records that were processed successfully
Parameters
record
:Any
- record that succeeded processing
result
:Any
- result from record handler
Returns
SuccessResponse
- "success", result, original record
Expand source code
def success_handler(self, record, result: Any) -> SuccessResponse: """ Keeps track of batch records that were processed successfully Parameters ---------- record: Any record that succeeded processing result: Any result from record handler Returns ------- SuccessResponse "success", result, original record """ entry = ("success", result, record) self.success_messages.append(record) return entry
class BatchProcessor (event_type: EventType, model: Optional[ForwardRef('BatchTypeModels')] = None)
-
Process native partial responses from SQS, Kinesis Data Streams, and DynamoDB.
Example
Process batch triggered by SQS
import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.SQS) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: SQSRecord): payload: str = record.body if payload: item: dict = json.loads(payload) ... @logger.inject_lambda_context @tracer.capture_lambda_handler @batch_processor(record_handler=record_handler, processor=processor) def lambda_handler(event, context: LambdaContext): return processor.response()
Process batch triggered by Kinesis Data Streams
import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.KinesisDataStreams) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: KinesisStreamRecord): logger.info(record.kinesis.data_as_text) payload: dict = record.kinesis.data_as_json() ... @logger.inject_lambda_context @tracer.capture_lambda_handler @batch_processor(record_handler=record_handler, processor=processor) def lambda_handler(event, context: LambdaContext): return processor.response()
Process batch triggered by DynamoDB Data Streams
import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.DynamoDBStreams) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: DynamoDBRecord): logger.info(record.dynamodb.new_image) payload: dict = json.loads(record.dynamodb.new_image.get("item").s_value) # alternatively: # changes: Dict[str, dynamo_db_stream_event.AttributeValue] = record.dynamodb.new_image # noqa: E800 # payload = change.get("Message").raw_event -> {"S": "<payload>"} ... @logger.inject_lambda_context @tracer.capture_lambda_handler def lambda_handler(event, context: LambdaContext): batch = event["Records"] with processor(records=batch, processor=processor): processed_messages = processor.process() # kick off processing, return list[tuple] return processor.response()
Raises
BatchProcessingError
- When all batch records fail processing
Process batch and partially report failed items
Parameters
event_type
:EventType
- Whether this is a SQS, DynamoDB Streams, or Kinesis Data Stream event
model
:Optional["BatchTypeModels"]
- Parser's data model using either SqsRecordModel, DynamoDBStreamRecordModel, KinesisDataStreamRecord
Exceptions
BatchProcessingError Raised when the entire batch has failed processing
Expand source code
class BatchProcessor(BasePartialProcessor): """Process native partial responses from SQS, Kinesis Data Streams, and DynamoDB. Example ------- ## Process batch triggered by SQS ```python import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.sqs_event import SQSRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.SQS) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: SQSRecord): payload: str = record.body if payload: item: dict = json.loads(payload) ... @logger.inject_lambda_context @tracer.capture_lambda_handler @batch_processor(record_handler=record_handler, processor=processor) def lambda_handler(event, context: LambdaContext): return processor.response() ``` ## Process batch triggered by Kinesis Data Streams ```python import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.kinesis_stream_event import KinesisStreamRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.KinesisDataStreams) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: KinesisStreamRecord): logger.info(record.kinesis.data_as_text) payload: dict = record.kinesis.data_as_json() ... @logger.inject_lambda_context @tracer.capture_lambda_handler @batch_processor(record_handler=record_handler, processor=processor) def lambda_handler(event, context: LambdaContext): return processor.response() ``` ## Process batch triggered by DynamoDB Data Streams ```python import json from aws_lambda_powertools import Logger, Tracer from aws_lambda_powertools.utilities.batch import BatchProcessor, EventType, batch_processor from aws_lambda_powertools.utilities.data_classes.dynamo_db_stream_event import DynamoDBRecord from aws_lambda_powertools.utilities.typing import LambdaContext processor = BatchProcessor(event_type=EventType.DynamoDBStreams) tracer = Tracer() logger = Logger() @tracer.capture_method def record_handler(record: DynamoDBRecord): logger.info(record.dynamodb.new_image) payload: dict = json.loads(record.dynamodb.new_image.get("item").s_value) # alternatively: # changes: Dict[str, dynamo_db_stream_event.AttributeValue] = record.dynamodb.new_image # noqa: E800 # payload = change.get("Message").raw_event -> {"S": "<payload>"} ... @logger.inject_lambda_context @tracer.capture_lambda_handler def lambda_handler(event, context: LambdaContext): batch = event["Records"] with processor(records=batch, processor=processor): processed_messages = processor.process() # kick off processing, return list[tuple] return processor.response() ``` Raises ------ BatchProcessingError When all batch records fail processing """ DEFAULT_RESPONSE: Dict[str, List[Optional[dict]]] = {"batchItemFailures": []} def __init__(self, event_type: EventType, model: Optional["BatchTypeModels"] = None): """Process batch and partially report failed items Parameters ---------- event_type: EventType Whether this is a SQS, DynamoDB Streams, or Kinesis Data Stream event model: Optional["BatchTypeModels"] Parser's data model using either SqsRecordModel, DynamoDBStreamRecordModel, KinesisDataStreamRecord Exceptions ---------- BatchProcessingError Raised when the entire batch has failed processing """ self.event_type = event_type self.model = model self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE) self._COLLECTOR_MAPPING = { EventType.SQS: self._collect_sqs_failures, EventType.KinesisDataStreams: self._collect_kinesis_failures, EventType.DynamoDBStreams: self._collect_dynamodb_failures, } self._DATA_CLASS_MAPPING = { EventType.SQS: SQSRecord, EventType.KinesisDataStreams: KinesisStreamRecord, EventType.DynamoDBStreams: DynamoDBRecord, } super().__init__() def response(self): """Batch items that failed processing, if any""" return self.batch_response def _prepare(self): """ Remove results from previous execution. """ self.success_messages.clear() self.fail_messages.clear() self.exceptions.clear() self.batch_response = copy.deepcopy(self.DEFAULT_RESPONSE) def _process_record(self, record: dict) -> Union[SuccessResponse, FailureResponse]: """ Process a record with instance's handler Parameters ---------- record: dict A batch record to be processed. """ data = self._to_batch_type(record=record, event_type=self.event_type, model=self.model) try: result = self.handler(record=data) return self.success_handler(record=record, result=result) except Exception: return self.failure_handler(record=data, exception=sys.exc_info()) def _clean(self): """ Report messages to be deleted in case of partial failure. """ if not self._has_messages_to_report(): return if self._entire_batch_failed(): raise BatchProcessingError( msg=f"All records failed processing. {len(self.exceptions)} individual errors logged " f"separately below.", child_exceptions=self.exceptions, ) messages = self._get_messages_to_report() self.batch_response = {"batchItemFailures": messages} def _has_messages_to_report(self) -> bool: if self.fail_messages: return True logger.debug(f"All {len(self.success_messages)} records successfully processed") return False def _entire_batch_failed(self) -> bool: return len(self.exceptions) == len(self.records) def _get_messages_to_report(self) -> List[Dict[str, str]]: """ Format messages to use in batch deletion """ return self._COLLECTOR_MAPPING[self.event_type]() # Event Source Data Classes follow python idioms for fields # while Parser/Pydantic follows the event field names to the latter def _collect_sqs_failures(self): failures = [] for msg in self.fail_messages: msg_id = msg.messageId if self.model else msg.message_id failures.append({"itemIdentifier": msg_id}) return failures def _collect_kinesis_failures(self): failures = [] for msg in self.fail_messages: msg_id = msg.kinesis.sequenceNumber if self.model else msg.kinesis.sequence_number failures.append({"itemIdentifier": msg_id}) return failures def _collect_dynamodb_failures(self): failures = [] for msg in self.fail_messages: msg_id = msg.dynamodb.SequenceNumber if self.model else msg.dynamodb.sequence_number failures.append({"itemIdentifier": msg_id}) return failures @overload def _to_batch_type(self, record: dict, event_type: EventType, model: "BatchTypeModels") -> "BatchTypeModels": ... # pragma: no cover @overload def _to_batch_type(self, record: dict, event_type: EventType) -> EventSourceDataClassTypes: ... # pragma: no cover def _to_batch_type(self, record: dict, event_type: EventType, model: Optional["BatchTypeModels"] = None): if model is not None: return model.parse_obj(record) return self._DATA_CLASS_MAPPING[event_type](record)
Ancestors
- BasePartialProcessor
- abc.ABC
Class variables
var DEFAULT_RESPONSE : Dict[str, List[Optional[dict]]]
Methods
def response(self)
-
Batch items that failed processing, if any
Expand source code
def response(self): """Batch items that failed processing, if any""" return self.batch_response
Inherited members
class EventType (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
An enumeration.
Expand source code
class EventType(Enum): SQS = "SQS" KinesisDataStreams = "KinesisDataStreams" DynamoDBStreams = "DynamoDBStreams"
Ancestors
- enum.Enum
Class variables
var DynamoDBStreams
var KinesisDataStreams
var SQS