Module aws_lambda_powertools.metrics.base
Expand source code
import datetime
import json
import logging
import numbers
import os
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from ..shared import constants
from ..shared.functions import resolve_env_var_choice
from .exceptions import MetricUnitError, MetricValueError, SchemaValidationError
logger = logging.getLogger(__name__)
MAX_METRICS = 100
MAX_DIMENSIONS = 9
class MetricUnit(Enum):
Seconds = "Seconds"
Microseconds = "Microseconds"
Milliseconds = "Milliseconds"
Bytes = "Bytes"
Kilobytes = "Kilobytes"
Megabytes = "Megabytes"
Gigabytes = "Gigabytes"
Terabytes = "Terabytes"
Bits = "Bits"
Kilobits = "Kilobits"
Megabits = "Megabits"
Gigabits = "Gigabits"
Terabits = "Terabits"
Percent = "Percent"
Count = "Count"
BytesPerSecond = "Bytes/Second"
KilobytesPerSecond = "Kilobytes/Second"
MegabytesPerSecond = "Megabytes/Second"
GigabytesPerSecond = "Gigabytes/Second"
TerabytesPerSecond = "Terabytes/Second"
BitsPerSecond = "Bits/Second"
KilobitsPerSecond = "Kilobits/Second"
MegabitsPerSecond = "Megabits/Second"
GigabitsPerSecond = "Gigabits/Second"
TerabitsPerSecond = "Terabits/Second"
CountPerSecond = "Count/Second"
class MetricManager:
"""Base class for metric functionality (namespace, metric, dimension, serialization)
MetricManager creates metrics asynchronously thanks to CloudWatch Embedded Metric Format (EMF).
CloudWatch EMF can create up to 100 metrics per EMF object
and metrics, dimensions, and namespace created via MetricManager
will adhere to the schema, will be serialized and validated against EMF Schema.
**Use `aws_lambda_powertools.metrics.metrics.Metrics` or
`aws_lambda_powertools.metrics.metric.single_metric` to create EMF metrics.**
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace to be set for all metrics
POWERTOOLS_SERVICE_NAME : str
service name used for default dimension
Raises
------
MetricUnitError
When metric metric isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
"""
def __init__(
self,
metric_set: Optional[Dict[str, Any]] = None,
dimension_set: Optional[Dict] = None,
namespace: Optional[str] = None,
metadata_set: Optional[Dict[str, Any]] = None,
service: Optional[str] = None,
):
self.metric_set = metric_set if metric_set is not None else {}
self.dimension_set = dimension_set if dimension_set is not None else {}
self.namespace = resolve_env_var_choice(choice=namespace, env=os.getenv(constants.METRICS_NAMESPACE_ENV))
self.service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV))
self._metric_units = [unit.value for unit in MetricUnit]
self._metric_unit_options = list(MetricUnit.__members__)
self.metadata_set = metadata_set if metadata_set is not None else {}
def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) -> None:
"""Adds given metric
Example
-------
**Add given metric using MetricUnit enum**
metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1)
**Add given metric using plain string as value unit**
metric.add_metric(name="BookingConfirmation", unit="Count", value=1)
Parameters
----------
name : str
Metric name
unit : Union[MetricUnit, str]
`aws_lambda_powertools.helper.models.MetricUnit`
value : float
Metric value
Raises
------
MetricUnitError
When metric unit is not supported by CloudWatch
"""
if not isinstance(value, numbers.Number):
raise MetricValueError(f"{value} is not a valid number")
unit = self.__extract_metric_unit_value(unit=unit)
metric: Dict = self.metric_set.get(name, defaultdict(list))
metric["Unit"] = unit
metric["Value"].append(float(value))
logger.debug(f"Adding metric: {name} with {metric}")
self.metric_set[name] = metric
if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS:
logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set")
metrics = self.serialize_metric_set()
print(json.dumps(metrics))
# clear metric set only as opposed to metrics and dimensions set
# since we could have more than 100 metrics
self.metric_set.clear()
def serialize_metric_set(
self, metrics: Optional[Dict] = None, dimensions: Optional[Dict] = None, metadata: Optional[Dict] = None
) -> Dict:
"""Serializes metric and dimensions set
Parameters
----------
metrics : Dict, optional
Dictionary of metrics to serialize, by default None
dimensions : Dict, optional
Dictionary of dimensions to serialize, by default None
metadata: Dict, optional
Dictionary of metadata to serialize, by default None
Example
-------
**Serialize metrics into EMF format**
metrics = MetricManager()
# ...add metrics, dimensions, namespace
ret = metrics.serialize_metric_set()
Returns
-------
Dict
Serialized metrics following EMF specification
Raises
------
SchemaValidationError
Raised when serialization fail schema validation
"""
if metrics is None: # pragma: no cover
metrics = self.metric_set
if dimensions is None: # pragma: no cover
dimensions = self.dimension_set
if metadata is None: # pragma: no cover
metadata = self.metadata_set
if self.service and not self.dimension_set.get("service"):
# self.service won't be a float
self.add_dimension(name="service", value=self.service) # type: ignore[arg-type]
if len(metrics) == 0:
raise SchemaValidationError("Must contain at least one metric.")
if self.namespace is None:
raise SchemaValidationError("Must contain a metric namespace.")
logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions})
metric_names_and_units: List[Dict[str, str]] = [] # [ { "Name": "metric_name", "Unit": "Count" } ]
metric_names_and_values: Dict[str, float] = {} # { "metric_name": 1.0 }
for metric_name in metrics:
metric: dict = metrics[metric_name]
metric_value: int = metric.get("Value", 0)
metric_unit: str = metric.get("Unit", "")
metric_names_and_units.append({"Name": metric_name, "Unit": metric_unit})
metric_names_and_values.update({metric_name: metric_value})
return {
"_aws": {
"Timestamp": int(datetime.datetime.now().timestamp() * 1000), # epoch
"CloudWatchMetrics": [
{
"Namespace": self.namespace, # "test_namespace"
"Dimensions": [list(dimensions.keys())], # [ "service" ]
"Metrics": metric_names_and_units,
}
],
},
**dimensions, # "service": "test_service"
**metadata, # "username": "test"
**metric_names_and_values, # "single_metric": 1.0
}
def add_dimension(self, name: str, value: str) -> None:
"""Adds given dimension to all metrics
Example
-------
**Add a metric dimensions**
metric.add_dimension(name="operation", value="confirm_booking")
Parameters
----------
name : str
Dimension name
value : str
Dimension value
"""
logger.debug(f"Adding dimension: {name}:{value}")
if len(self.dimension_set) == 9:
raise SchemaValidationError(
f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}."
)
# Cast value to str according to EMF spec
# Majority of values are expected to be string already, so
# checking before casting improves performance in most cases
self.dimension_set[name] = value if isinstance(value, str) else str(value)
def add_metadata(self, key: str, value: Any) -> None:
"""Adds high cardinal metadata for metrics object
This will not be available during metrics visualization.
Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then
use add_dimensions method.
Example
-------
**Add metrics metadata**
metric.add_metadata(key="booking_id", value="booking_id")
Parameters
----------
key : str
Metadata key
value : any
Metadata value
"""
logger.debug(f"Adding metadata: {key}:{value}")
# Cast key to str according to EMF spec
# Majority of keys are expected to be string already, so
# checking before casting improves performance in most cases
if isinstance(key, str):
self.metadata_set[key] = value
else:
self.metadata_set[str(key)] = value
def __extract_metric_unit_value(self, unit: Union[str, MetricUnit]) -> str:
"""Return metric value from metric unit whether that's str or MetricUnit enum
Parameters
----------
unit : Union[str, MetricUnit]
Metric unit
Returns
-------
str
Metric unit value (e.g. "Seconds", "Count/Second")
Raises
------
MetricUnitError
When metric unit is not supported by CloudWatch
"""
if isinstance(unit, str):
if unit in self._metric_unit_options:
unit = MetricUnit[unit].value
if unit not in self._metric_units:
raise MetricUnitError(
f"Invalid metric unit '{unit}', expected either option: {self._metric_unit_options}"
)
if isinstance(unit, MetricUnit):
unit = unit.value
return unit
Classes
class MetricManager (metric_set: Optional[Dict[str, Any]] = None, dimension_set: Optional[Dict[~KT, ~VT]] = None, namespace: Optional[str] = None, metadata_set: Optional[Dict[str, Any]] = None, service: Optional[str] = None)
-
Base class for metric functionality (namespace, metric, dimension, serialization)
MetricManager creates metrics asynchronously thanks to CloudWatch Embedded Metric Format (EMF). CloudWatch EMF can create up to 100 metrics per EMF object and metrics, dimensions, and namespace created via MetricManager will adhere to the schema, will be serialized and validated against EMF Schema.
Use
Metrics
orsingle_metric()
to create EMF metrics.Environment Variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace to be set for all metrics POWERTOOLS_SERVICE_NAME : str service name used for default dimension
Raises
MetricUnitError
- When metric metric isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
class MetricManager: """Base class for metric functionality (namespace, metric, dimension, serialization) MetricManager creates metrics asynchronously thanks to CloudWatch Embedded Metric Format (EMF). CloudWatch EMF can create up to 100 metrics per EMF object and metrics, dimensions, and namespace created via MetricManager will adhere to the schema, will be serialized and validated against EMF Schema. **Use `aws_lambda_powertools.metrics.metrics.Metrics` or `aws_lambda_powertools.metrics.metric.single_metric` to create EMF metrics.** Environment variables --------------------- POWERTOOLS_METRICS_NAMESPACE : str metric namespace to be set for all metrics POWERTOOLS_SERVICE_NAME : str service name used for default dimension Raises ------ MetricUnitError When metric metric isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ def __init__( self, metric_set: Optional[Dict[str, Any]] = None, dimension_set: Optional[Dict] = None, namespace: Optional[str] = None, metadata_set: Optional[Dict[str, Any]] = None, service: Optional[str] = None, ): self.metric_set = metric_set if metric_set is not None else {} self.dimension_set = dimension_set if dimension_set is not None else {} self.namespace = resolve_env_var_choice(choice=namespace, env=os.getenv(constants.METRICS_NAMESPACE_ENV)) self.service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV)) self._metric_units = [unit.value for unit in MetricUnit] self._metric_unit_options = list(MetricUnit.__members__) self.metadata_set = metadata_set if metadata_set is not None else {} def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) -> None: """Adds given metric Example ------- **Add given metric using MetricUnit enum** metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1) **Add given metric using plain string as value unit** metric.add_metric(name="BookingConfirmation", unit="Count", value=1) Parameters ---------- name : str Metric name unit : Union[MetricUnit, str] `aws_lambda_powertools.helper.models.MetricUnit` value : float Metric value Raises ------ MetricUnitError When metric unit is not supported by CloudWatch """ if not isinstance(value, numbers.Number): raise MetricValueError(f"{value} is not a valid number") unit = self.__extract_metric_unit_value(unit=unit) metric: Dict = self.metric_set.get(name, defaultdict(list)) metric["Unit"] = unit metric["Value"].append(float(value)) logger.debug(f"Adding metric: {name} with {metric}") self.metric_set[name] = metric if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS: logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set") metrics = self.serialize_metric_set() print(json.dumps(metrics)) # clear metric set only as opposed to metrics and dimensions set # since we could have more than 100 metrics self.metric_set.clear() def serialize_metric_set( self, metrics: Optional[Dict] = None, dimensions: Optional[Dict] = None, metadata: Optional[Dict] = None ) -> Dict: """Serializes metric and dimensions set Parameters ---------- metrics : Dict, optional Dictionary of metrics to serialize, by default None dimensions : Dict, optional Dictionary of dimensions to serialize, by default None metadata: Dict, optional Dictionary of metadata to serialize, by default None Example ------- **Serialize metrics into EMF format** metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set() Returns ------- Dict Serialized metrics following EMF specification Raises ------ SchemaValidationError Raised when serialization fail schema validation """ if metrics is None: # pragma: no cover metrics = self.metric_set if dimensions is None: # pragma: no cover dimensions = self.dimension_set if metadata is None: # pragma: no cover metadata = self.metadata_set if self.service and not self.dimension_set.get("service"): # self.service won't be a float self.add_dimension(name="service", value=self.service) # type: ignore[arg-type] if len(metrics) == 0: raise SchemaValidationError("Must contain at least one metric.") if self.namespace is None: raise SchemaValidationError("Must contain a metric namespace.") logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions}) metric_names_and_units: List[Dict[str, str]] = [] # [ { "Name": "metric_name", "Unit": "Count" } ] metric_names_and_values: Dict[str, float] = {} # { "metric_name": 1.0 } for metric_name in metrics: metric: dict = metrics[metric_name] metric_value: int = metric.get("Value", 0) metric_unit: str = metric.get("Unit", "") metric_names_and_units.append({"Name": metric_name, "Unit": metric_unit}) metric_names_and_values.update({metric_name: metric_value}) return { "_aws": { "Timestamp": int(datetime.datetime.now().timestamp() * 1000), # epoch "CloudWatchMetrics": [ { "Namespace": self.namespace, # "test_namespace" "Dimensions": [list(dimensions.keys())], # [ "service" ] "Metrics": metric_names_and_units, } ], }, **dimensions, # "service": "test_service" **metadata, # "username": "test" **metric_names_and_values, # "single_metric": 1.0 } def add_dimension(self, name: str, value: str) -> None: """Adds given dimension to all metrics Example ------- **Add a metric dimensions** metric.add_dimension(name="operation", value="confirm_booking") Parameters ---------- name : str Dimension name value : str Dimension value """ logger.debug(f"Adding dimension: {name}:{value}") if len(self.dimension_set) == 9: raise SchemaValidationError( f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}." ) # Cast value to str according to EMF spec # Majority of values are expected to be string already, so # checking before casting improves performance in most cases self.dimension_set[name] = value if isinstance(value, str) else str(value) def add_metadata(self, key: str, value: Any) -> None: """Adds high cardinal metadata for metrics object This will not be available during metrics visualization. Instead, this will be searchable through logs. If you're looking to add metadata to filter metrics, then use add_dimensions method. Example ------- **Add metrics metadata** metric.add_metadata(key="booking_id", value="booking_id") Parameters ---------- key : str Metadata key value : any Metadata value """ logger.debug(f"Adding metadata: {key}:{value}") # Cast key to str according to EMF spec # Majority of keys are expected to be string already, so # checking before casting improves performance in most cases if isinstance(key, str): self.metadata_set[key] = value else: self.metadata_set[str(key)] = value def __extract_metric_unit_value(self, unit: Union[str, MetricUnit]) -> str: """Return metric value from metric unit whether that's str or MetricUnit enum Parameters ---------- unit : Union[str, MetricUnit] Metric unit Returns ------- str Metric unit value (e.g. "Seconds", "Count/Second") Raises ------ MetricUnitError When metric unit is not supported by CloudWatch """ if isinstance(unit, str): if unit in self._metric_unit_options: unit = MetricUnit[unit].value if unit not in self._metric_units: raise MetricUnitError( f"Invalid metric unit '{unit}', expected either option: {self._metric_unit_options}" ) if isinstance(unit, MetricUnit): unit = unit.value return unit
Subclasses
Methods
def add_dimension(self, name: str, value: str) ‑> None
-
Adds given dimension to all metrics
Example
Add a metric dimensions
metric.add_dimension(name="operation", value="confirm_booking")
Parameters
name
:str
- Dimension name
value
:str
- Dimension value
Expand source code
def add_dimension(self, name: str, value: str) -> None: """Adds given dimension to all metrics Example ------- **Add a metric dimensions** metric.add_dimension(name="operation", value="confirm_booking") Parameters ---------- name : str Dimension name value : str Dimension value """ logger.debug(f"Adding dimension: {name}:{value}") if len(self.dimension_set) == 9: raise SchemaValidationError( f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}." ) # Cast value to str according to EMF spec # Majority of values are expected to be string already, so # checking before casting improves performance in most cases self.dimension_set[name] = value if isinstance(value, str) else str(value)
def add_metadata(self, key: str, value: Any) ‑> None
-
Adds high cardinal metadata for metrics object
This will not be available during metrics visualization. Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then use add_dimensions method.
Example
Add metrics metadata
metric.add_metadata(key="booking_id", value="booking_id")
Parameters
key
:str
- Metadata key
value
:any
- Metadata value
Expand source code
def add_metadata(self, key: str, value: Any) -> None: """Adds high cardinal metadata for metrics object This will not be available during metrics visualization. Instead, this will be searchable through logs. If you're looking to add metadata to filter metrics, then use add_dimensions method. Example ------- **Add metrics metadata** metric.add_metadata(key="booking_id", value="booking_id") Parameters ---------- key : str Metadata key value : any Metadata value """ logger.debug(f"Adding metadata: {key}:{value}") # Cast key to str according to EMF spec # Majority of keys are expected to be string already, so # checking before casting improves performance in most cases if isinstance(key, str): self.metadata_set[key] = value else: self.metadata_set[str(key)] = value
def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) ‑> None
-
Adds given metric
Example
Add given metric using MetricUnit enum
metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1)
Add given metric using plain string as value unit
metric.add_metric(name="BookingConfirmation", unit="Count", value=1)
Parameters
name
:str
- Metric name
unit
:Union[MetricUnit, str]
aws_lambda_powertools.helper.models.MetricUnit
value
:float
- Metric value
Raises
MetricUnitError
- When metric unit is not supported by CloudWatch
Expand source code
def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) -> None: """Adds given metric Example ------- **Add given metric using MetricUnit enum** metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1) **Add given metric using plain string as value unit** metric.add_metric(name="BookingConfirmation", unit="Count", value=1) Parameters ---------- name : str Metric name unit : Union[MetricUnit, str] `aws_lambda_powertools.helper.models.MetricUnit` value : float Metric value Raises ------ MetricUnitError When metric unit is not supported by CloudWatch """ if not isinstance(value, numbers.Number): raise MetricValueError(f"{value} is not a valid number") unit = self.__extract_metric_unit_value(unit=unit) metric: Dict = self.metric_set.get(name, defaultdict(list)) metric["Unit"] = unit metric["Value"].append(float(value)) logger.debug(f"Adding metric: {name} with {metric}") self.metric_set[name] = metric if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS: logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set") metrics = self.serialize_metric_set() print(json.dumps(metrics)) # clear metric set only as opposed to metrics and dimensions set # since we could have more than 100 metrics self.metric_set.clear()
def serialize_metric_set(self, metrics: Optional[Dict[~KT, ~VT]] = None, dimensions: Optional[Dict[~KT, ~VT]] = None, metadata: Optional[Dict[~KT, ~VT]] = None) ‑> Dict[~KT, ~VT]
-
Serializes metric and dimensions set
Parameters
metrics
:Dict
, optional- Dictionary of metrics to serialize, by default None
dimensions
:Dict
, optional- Dictionary of dimensions to serialize, by default None
metadata
:Dict
, optional- Dictionary of metadata to serialize, by default None
Example
Serialize metrics into EMF format
metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set()
Returns
Dict
- Serialized metrics following EMF specification
Raises
SchemaValidationError
- Raised when serialization fail schema validation
Expand source code
def serialize_metric_set( self, metrics: Optional[Dict] = None, dimensions: Optional[Dict] = None, metadata: Optional[Dict] = None ) -> Dict: """Serializes metric and dimensions set Parameters ---------- metrics : Dict, optional Dictionary of metrics to serialize, by default None dimensions : Dict, optional Dictionary of dimensions to serialize, by default None metadata: Dict, optional Dictionary of metadata to serialize, by default None Example ------- **Serialize metrics into EMF format** metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set() Returns ------- Dict Serialized metrics following EMF specification Raises ------ SchemaValidationError Raised when serialization fail schema validation """ if metrics is None: # pragma: no cover metrics = self.metric_set if dimensions is None: # pragma: no cover dimensions = self.dimension_set if metadata is None: # pragma: no cover metadata = self.metadata_set if self.service and not self.dimension_set.get("service"): # self.service won't be a float self.add_dimension(name="service", value=self.service) # type: ignore[arg-type] if len(metrics) == 0: raise SchemaValidationError("Must contain at least one metric.") if self.namespace is None: raise SchemaValidationError("Must contain a metric namespace.") logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions}) metric_names_and_units: List[Dict[str, str]] = [] # [ { "Name": "metric_name", "Unit": "Count" } ] metric_names_and_values: Dict[str, float] = {} # { "metric_name": 1.0 } for metric_name in metrics: metric: dict = metrics[metric_name] metric_value: int = metric.get("Value", 0) metric_unit: str = metric.get("Unit", "") metric_names_and_units.append({"Name": metric_name, "Unit": metric_unit}) metric_names_and_values.update({metric_name: metric_value}) return { "_aws": { "Timestamp": int(datetime.datetime.now().timestamp() * 1000), # epoch "CloudWatchMetrics": [ { "Namespace": self.namespace, # "test_namespace" "Dimensions": [list(dimensions.keys())], # [ "service" ] "Metrics": metric_names_and_units, } ], }, **dimensions, # "service": "test_service" **metadata, # "username": "test" **metric_names_and_values, # "single_metric": 1.0 }
class MetricUnit (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
An enumeration.
Expand source code
class MetricUnit(Enum): Seconds = "Seconds" Microseconds = "Microseconds" Milliseconds = "Milliseconds" Bytes = "Bytes" Kilobytes = "Kilobytes" Megabytes = "Megabytes" Gigabytes = "Gigabytes" Terabytes = "Terabytes" Bits = "Bits" Kilobits = "Kilobits" Megabits = "Megabits" Gigabits = "Gigabits" Terabits = "Terabits" Percent = "Percent" Count = "Count" BytesPerSecond = "Bytes/Second" KilobytesPerSecond = "Kilobytes/Second" MegabytesPerSecond = "Megabytes/Second" GigabytesPerSecond = "Gigabytes/Second" TerabytesPerSecond = "Terabytes/Second" BitsPerSecond = "Bits/Second" KilobitsPerSecond = "Kilobits/Second" MegabitsPerSecond = "Megabits/Second" GigabitsPerSecond = "Gigabits/Second" TerabitsPerSecond = "Terabits/Second" CountPerSecond = "Count/Second"
Ancestors
- enum.Enum
Class variables
var Bits
var BitsPerSecond
var Bytes
var BytesPerSecond
var Count
var CountPerSecond
var Gigabits
var GigabitsPerSecond
var Gigabytes
var GigabytesPerSecond
var Kilobits
var KilobitsPerSecond
var Kilobytes
var KilobytesPerSecond
var Megabits
var MegabitsPerSecond
var Megabytes
var MegabytesPerSecond
var Microseconds
var Milliseconds
var Percent
var Seconds
var Terabits
var TerabitsPerSecond
var Terabytes
var TerabytesPerSecond