Module aws_lambda_powertools.logging

Logging utility

Expand source code
"""Logging utility
"""
from .logger import Logger

__all__ = ["Logger"]

Sub-modules

aws_lambda_powertools.logging.correlation_paths

Built-in correlation paths

aws_lambda_powertools.logging.exceptions
aws_lambda_powertools.logging.filters
aws_lambda_powertools.logging.formatter
aws_lambda_powertools.logging.lambda_context
aws_lambda_powertools.logging.logger
aws_lambda_powertools.logging.utils

Classes

class Logger (service: Optional[str] = None, level: Union[str, int, None] = None, child: bool = False, sampling_rate: Optional[float] = None, stream: Optional[IO[str]] = None, logger_formatter: Optional[~PowertoolsFormatter] = None, logger_handler: Optional[logging.Handler] = None, **kwargs)

Creates and setups a logger to format statements in JSON.

Includes service name and any additional key=value into logs It also accepts both service name or level explicitly via env vars

Environment Variables

POWERTOOLS_SERVICE_NAME : str service name LOG_LEVEL: str logging level (e.g. INFO, DEBUG) POWERTOOLS_LOGGER_SAMPLE_RATE: float sampling rate ranging from 0 to 1, 1 being 100% sampling

Parameters

service : str, optional
service name to be appended in logs, by default "service_undefined"
level : str, int optional
logging.level, by default "INFO"
child : bool, optional
create a child Logger named ., False by default
sample_rate : float, optional
sample rate for debug calls within execution context defaults to 0.0
stream : sys.stdout, optional
valid output for a logging stream, by default sys.stdout
logger_formatter : PowertoolsFormatter, optional
custom logging formatter that implements PowertoolsFormatter
logger_handler : logging.Handler, optional
custom logging handler e.g. logging.FileHandler("file.log")

Parameters Propagated To Lambdapowertoolsformatter

datefmt: str, optional String directives (strftime) to format log timestamp using time, by default it uses RFC 3339. use_datetime_directive: str, optional Interpret datefmt as a format string for datetime.datetime.strftime, rather than time.strftime.

See <https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior> . This
also supports a custom %F directive for milliseconds.

json_serializer : Callable, optional function to serialize obj to a JSON formatted str, by default json.dumps json_deserializer : Callable, optional function to deserialize str, bytes, bytearray containing a JSON document to a Python obj`, by default json.loads json_default : Callable, optional function to coerce unserializable values, by default str()

Only used when no custom formatter is set

utc : bool, optional set logging timestamp to UTC, by default False to continue to use local time as per stdlib log_record_order : list, optional set order of log keys when logging, by default ["level", "location", "message", "timestamp"]

Example

Setups structured logging in JSON for Lambda functions with explicit service name

>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
        logger.info("Hello")

Setups structured logging in JSON for Lambda functions using env vars

$ export POWERTOOLS_SERVICE_NAME="payment"
$ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling
>>> from aws_lambda_powertools import Logger
>>> logger = Logger()
>>>
>>> def handler(event, context):
        logger.info("Hello")

Append payment_id to previously setup logger

>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
        logger.append_keys(payment_id=event["payment_id"])
        logger.info("Hello")

Create child Logger using logging inheritance via child param

>>> # app.py
>>> import another_file
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> # another_file.py
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment", child=True)

Logging in UTC timezone

>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", utc=True)

Brings message as the first key in log statements

>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", log_record_order=["message"])

Logging to a file instead of standard output for testing

>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", logger_handler=logging.FileHandler("log.json"))

Raises

InvalidLoggerSamplingRateError
When sampling rate provided is not a float

Initialize the logger with a name and an optional level.

Expand source code
class Logger(logging.Logger):  # lgtm [py/missing-call-to-init]
    """Creates and setups a logger to format statements in JSON.

    Includes service name and any additional key=value into logs
    It also accepts both service name or level explicitly via env vars

    Environment variables
    ---------------------
    POWERTOOLS_SERVICE_NAME : str
        service name
    LOG_LEVEL: str
        logging level (e.g. INFO, DEBUG)
    POWERTOOLS_LOGGER_SAMPLE_RATE: float
        sampling rate ranging from 0 to 1, 1 being 100% sampling

    Parameters
    ----------
    service : str, optional
        service name to be appended in logs, by default "service_undefined"
    level : str, int optional
        logging.level, by default "INFO"
    child: bool, optional
        create a child Logger named <service>.<caller_file_name>, False by default
    sample_rate: float, optional
        sample rate for debug calls within execution context defaults to 0.0
    stream: sys.stdout, optional
        valid output for a logging stream, by default sys.stdout
    logger_formatter: PowertoolsFormatter, optional
        custom logging formatter that implements PowertoolsFormatter
    logger_handler: logging.Handler, optional
        custom logging handler e.g. logging.FileHandler("file.log")

    Parameters propagated to LambdaPowertoolsFormatter
    --------------------------------------------------
    datefmt: str, optional
        String directives (strftime) to format log timestamp using `time`, by default it uses RFC
        3339.
    use_datetime_directive: str, optional
        Interpret `datefmt` as a format string for `datetime.datetime.strftime`, rather than
        `time.strftime`.

        See https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior . This
        also supports a custom %F directive for milliseconds.
    json_serializer : Callable, optional
        function to serialize `obj` to a JSON formatted `str`, by default json.dumps
    json_deserializer : Callable, optional
        function to deserialize `str`, `bytes`, bytearray` containing a JSON document to a Python `obj`,
        by default json.loads
    json_default : Callable, optional
        function to coerce unserializable values, by default `str()`

        Only used when no custom formatter is set
    utc : bool, optional
        set logging timestamp to UTC, by default False to continue to use local time as per stdlib
    log_record_order : list, optional
        set order of log keys when logging, by default ["level", "location", "message", "timestamp"]

    Example
    -------
    **Setups structured logging in JSON for Lambda functions with explicit service name**

        >>> from aws_lambda_powertools import Logger
        >>> logger = Logger(service="payment")
        >>>
        >>> def handler(event, context):
                logger.info("Hello")

    **Setups structured logging in JSON for Lambda functions using env vars**

        $ export POWERTOOLS_SERVICE_NAME="payment"
        $ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling
        >>> from aws_lambda_powertools import Logger
        >>> logger = Logger()
        >>>
        >>> def handler(event, context):
                logger.info("Hello")

    **Append payment_id to previously setup logger**

        >>> from aws_lambda_powertools import Logger
        >>> logger = Logger(service="payment")
        >>>
        >>> def handler(event, context):
                logger.append_keys(payment_id=event["payment_id"])
                logger.info("Hello")

    **Create child Logger using logging inheritance via child param**

        >>> # app.py
        >>> import another_file
        >>> from aws_lambda_powertools import Logger
        >>> logger = Logger(service="payment")
        >>>
        >>> # another_file.py
        >>> from aws_lambda_powertools import Logger
        >>> logger = Logger(service="payment", child=True)

    **Logging in UTC timezone**

        >>> # app.py
        >>> import logging
        >>> from aws_lambda_powertools import Logger
        >>>
        >>> logger = Logger(service="payment", utc=True)

    **Brings message as the first key in log statements**

        >>> # app.py
        >>> import logging
        >>> from aws_lambda_powertools import Logger
        >>>
        >>> logger = Logger(service="payment", log_record_order=["message"])

    **Logging to a file instead of standard output for testing**

        >>> # app.py
        >>> import logging
        >>> from aws_lambda_powertools import Logger
        >>>
        >>> logger = Logger(service="payment", logger_handler=logging.FileHandler("log.json"))

    Raises
    ------
    InvalidLoggerSamplingRateError
        When sampling rate provided is not a float
    """

    def __init__(
        self,
        service: Optional[str] = None,
        level: Union[str, int, None] = None,
        child: bool = False,
        sampling_rate: Optional[float] = None,
        stream: Optional[IO[str]] = None,
        logger_formatter: Optional[PowertoolsFormatter] = None,
        logger_handler: Optional[logging.Handler] = None,
        **kwargs,
    ):
        self.service = resolve_env_var_choice(
            choice=service, env=os.getenv(constants.SERVICE_NAME_ENV, "service_undefined")
        )
        self.sampling_rate = resolve_env_var_choice(
            choice=sampling_rate, env=os.getenv(constants.LOGGER_LOG_SAMPLING_RATE)
        )
        self.child = child
        self.logger_formatter = logger_formatter
        self.logger_handler = logger_handler or logging.StreamHandler(stream)
        self.log_level = self._get_log_level(level)
        self._is_deduplication_disabled = resolve_truthy_env_var_choice(
            env=os.getenv(constants.LOGGER_LOG_DEDUPLICATION_ENV, "false")
        )
        self._default_log_keys = {"service": self.service, "sampling_rate": self.sampling_rate}
        self._logger = self._get_logger()

        self._init_logger(**kwargs)

    def __getattr__(self, name):
        # Proxy attributes not found to actual logger to support backward compatibility
        # https://github.com/awslabs/aws-lambda-powertools-python/issues/97
        return getattr(self._logger, name)

    def _get_logger(self):
        """Returns a Logger named {self.service}, or {self.service.filename} for child loggers"""
        logger_name = self.service
        if self.child:
            logger_name = f"{self.service}.{self._get_caller_filename()}"

        return logging.getLogger(logger_name)

    def _init_logger(self, **kwargs):
        """Configures new logger"""

        # Skip configuration if it's a child logger or a pre-configured logger
        # to prevent the following:
        #   a) multiple handlers being attached
        #   b) different sampling mechanisms
        #   c) multiple messages from being logged as handlers can be duplicated
        is_logger_preconfigured = getattr(self._logger, "init", False)
        if self.child or is_logger_preconfigured:
            return

        self._configure_sampling()
        self._logger.setLevel(self.log_level)
        self._logger.addHandler(self.logger_handler)
        self.structure_logs(**kwargs)

        # Pytest Live Log feature duplicates log records for colored output
        # but we explicitly add a filter for log deduplication.
        # This flag disables this protection when you explicit want logs to be duplicated (#262)
        if not self._is_deduplication_disabled:
            logger.debug("Adding filter in root logger to suppress child logger records to bubble up")
            for handler in logging.root.handlers:
                # It'll add a filter to suppress any child logger from self.service
                # Example: `Logger(service="order")`, where service is Order
                # It'll reject all loggers starting with `order` e.g. order.checkout, order.shared
                handler.addFilter(SuppressFilter(self.service))

        # as per bug in #249, we should not be pre-configuring an existing logger
        # therefore we set a custom attribute in the Logger that will be returned
        # std logging will return the same Logger with our attribute if name is reused
        logger.debug(f"Marking logger {self.service} as preconfigured")
        self._logger.init = True

    def _configure_sampling(self):
        """Dynamically set log level based on sampling rate

        Raises
        ------
        InvalidLoggerSamplingRateError
            When sampling rate provided is not a float
        """
        try:
            if self.sampling_rate and random.random() <= float(self.sampling_rate):
                logger.debug("Setting log level to Debug due to sampling rate")
                self.log_level = logging.DEBUG
        except ValueError:
            raise InvalidLoggerSamplingRateError(
                f"Expected a float value ranging 0 to 1, but received {self.sampling_rate} instead."
                f"Please review POWERTOOLS_LOGGER_SAMPLE_RATE environment variable."
            )

    def inject_lambda_context(
        self,
        lambda_handler: Optional[Callable[[Dict, Any], Any]] = None,
        log_event: Optional[bool] = None,
        correlation_id_path: Optional[str] = None,
        clear_state: Optional[bool] = False,
    ):
        """Decorator to capture Lambda contextual info and inject into logger

        Parameters
        ----------
        clear_state : bool, optional
            Instructs logger to remove any custom keys previously added
        lambda_handler : Callable
            Method to inject the lambda context
        log_event : bool, optional
            Instructs logger to log Lambda Event, by default False
        correlation_id_path: str, optional
            Optional JMESPath for the correlation_id

        Environment variables
        ---------------------
        POWERTOOLS_LOGGER_LOG_EVENT : str
            instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`)

        Example
        -------
        **Captures Lambda contextual runtime info (e.g memory, arn, req_id)**

            from aws_lambda_powertools import Logger

            logger = Logger(service="payment")

            @logger.inject_lambda_context
            def handler(event, context):
                logger.info("Hello")

        **Captures Lambda contextual runtime info and logs incoming request**

            from aws_lambda_powertools import Logger

            logger = Logger(service="payment")

            @logger.inject_lambda_context(log_event=True)
            def handler(event, context):
                logger.info("Hello")

        Returns
        -------
        decorate : Callable
            Decorated lambda handler
        """

        # If handler is None we've been called with parameters
        # Return a partial function with args filled
        if lambda_handler is None:
            logger.debug("Decorator called with parameters")
            return functools.partial(
                self.inject_lambda_context,
                log_event=log_event,
                correlation_id_path=correlation_id_path,
                clear_state=clear_state,
            )

        log_event = resolve_truthy_env_var_choice(
            env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false"), choice=log_event
        )

        @functools.wraps(lambda_handler)
        def decorate(event, context, **kwargs):
            lambda_context = build_lambda_context_model(context)
            cold_start = _is_cold_start()

            if clear_state:
                self.structure_logs(cold_start=cold_start, **lambda_context.__dict__)
            else:
                self.append_keys(cold_start=cold_start, **lambda_context.__dict__)

            if correlation_id_path:
                self.set_correlation_id(jmespath.search(correlation_id_path, event))

            if log_event:
                logger.debug("Event received")
                self.info(getattr(event, "raw_event", event))

            return lambda_handler(event, context)

        return decorate

    def append_keys(self, **additional_keys):
        self.registered_formatter.append_keys(**additional_keys)

    def remove_keys(self, keys: Iterable[str]):
        self.registered_formatter.remove_keys(keys)

    @property
    def registered_handler(self) -> logging.Handler:
        """Convenience property to access logger handler"""
        handlers = self._logger.parent.handlers if self.child else self._logger.handlers
        return handlers[0]

    @property
    def registered_formatter(self) -> PowertoolsFormatter:
        """Convenience property to access logger formatter"""
        return self.registered_handler.formatter  # type: ignore

    def structure_logs(self, append: bool = False, **keys):
        """Sets logging formatting to JSON.

        Optionally, it can append keyword arguments
        to an existing logger so it is available across future log statements.

        Last keyword argument and value wins if duplicated.

        Parameters
        ----------
        append : bool, optional
            append keys provided to logger formatter, by default False
        """
        # There are 3 operational modes for this method
        ## 1. Register a Powertools Formatter for the first time
        ## 2. Append new keys to the current logger formatter; deprecated in favour of append_keys
        ## 3. Add new keys and discard existing to the registered formatter

        # Mode 1
        log_keys = {**self._default_log_keys, **keys}
        is_logger_preconfigured = getattr(self._logger, "init", False)
        if not is_logger_preconfigured:
            formatter = self.logger_formatter or LambdaPowertoolsFormatter(**log_keys)  # type: ignore
            return self.registered_handler.setFormatter(formatter)

        # Mode 2 (legacy)
        if append:
            # Maintenance: Add deprecation warning for major version
            return self.append_keys(**keys)

        # Mode 3
        self.registered_formatter.clear_state()
        self.registered_formatter.append_keys(**log_keys)

    def set_correlation_id(self, value: Optional[str]):
        """Sets the correlation_id in the logging json

        Parameters
        ----------
        value : str, optional
            Value for the correlation id. None will remove the correlation_id
        """
        self.append_keys(correlation_id=value)

    def get_correlation_id(self) -> Optional[str]:
        """Gets the correlation_id in the logging json

        Returns
        -------
        str, optional
            Value for the correlation id
        """
        if isinstance(self.registered_formatter, LambdaPowertoolsFormatter):
            return self.registered_formatter.log_format.get("correlation_id")
        return None

    @staticmethod
    def _get_log_level(level: Union[str, int, None]) -> Union[str, int]:
        """Returns preferred log level set by the customer in upper case"""
        if isinstance(level, int):
            return level

        log_level: Optional[str] = level or os.getenv("LOG_LEVEL")
        if log_level is None:
            return logging.INFO

        return log_level.upper()

    @staticmethod
    def _get_caller_filename():
        """Return caller filename by finding the caller frame"""
        # Current frame         => _get_logger()
        # Previous frame        => logger.py
        # Before previous frame => Caller
        frame = inspect.currentframe()
        caller_frame = frame.f_back.f_back.f_back
        return caller_frame.f_globals["__name__"]

Ancestors

  • logging.Logger
  • logging.Filterer

Instance variables

var registered_formatter : ~PowertoolsFormatter

Convenience property to access logger formatter

Expand source code
@property
def registered_formatter(self) -> PowertoolsFormatter:
    """Convenience property to access logger formatter"""
    return self.registered_handler.formatter  # type: ignore
var registered_handler : logging.Handler

Convenience property to access logger handler

Expand source code
@property
def registered_handler(self) -> logging.Handler:
    """Convenience property to access logger handler"""
    handlers = self._logger.parent.handlers if self.child else self._logger.handlers
    return handlers[0]

Methods

def append_keys(self, **additional_keys)
Expand source code
def append_keys(self, **additional_keys):
    self.registered_formatter.append_keys(**additional_keys)
def get_correlation_id(self) ‑> Optional[str]

Gets the correlation_id in the logging json

Returns

str, optional
Value for the correlation id
Expand source code
def get_correlation_id(self) -> Optional[str]:
    """Gets the correlation_id in the logging json

    Returns
    -------
    str, optional
        Value for the correlation id
    """
    if isinstance(self.registered_formatter, LambdaPowertoolsFormatter):
        return self.registered_formatter.log_format.get("correlation_id")
    return None
def inject_lambda_context(self, lambda_handler: Optional[Callable[[Dict[~KT, ~VT], Any], Any]] = None, log_event: Optional[bool] = None, correlation_id_path: Optional[str] = None, clear_state: Optional[bool] = False)

Decorator to capture Lambda contextual info and inject into logger

Parameters

clear_state : bool, optional
Instructs logger to remove any custom keys previously added
lambda_handler : Callable
Method to inject the lambda context
log_event : bool, optional
Instructs logger to log Lambda Event, by default False
correlation_id_path : str, optional
Optional JMESPath for the correlation_id

Environment Variables

POWERTOOLS_LOGGER_LOG_EVENT : str instruct logger to log Lambda Event (e.g. "true", "True", "TRUE")

Example

Captures Lambda contextual runtime info (e.g memory, arn, req_id)

from aws_lambda_powertools import Logger

logger = Logger(service="payment")

@logger.inject_lambda_context
def handler(event, context):
    logger.info("Hello")

Captures Lambda contextual runtime info and logs incoming request

from aws_lambda_powertools import Logger

logger = Logger(service="payment")

@logger.inject_lambda_context(log_event=True)
def handler(event, context):
    logger.info("Hello")

Returns

decorate : Callable
Decorated lambda handler
Expand source code
def inject_lambda_context(
    self,
    lambda_handler: Optional[Callable[[Dict, Any], Any]] = None,
    log_event: Optional[bool] = None,
    correlation_id_path: Optional[str] = None,
    clear_state: Optional[bool] = False,
):
    """Decorator to capture Lambda contextual info and inject into logger

    Parameters
    ----------
    clear_state : bool, optional
        Instructs logger to remove any custom keys previously added
    lambda_handler : Callable
        Method to inject the lambda context
    log_event : bool, optional
        Instructs logger to log Lambda Event, by default False
    correlation_id_path: str, optional
        Optional JMESPath for the correlation_id

    Environment variables
    ---------------------
    POWERTOOLS_LOGGER_LOG_EVENT : str
        instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`)

    Example
    -------
    **Captures Lambda contextual runtime info (e.g memory, arn, req_id)**

        from aws_lambda_powertools import Logger

        logger = Logger(service="payment")

        @logger.inject_lambda_context
        def handler(event, context):
            logger.info("Hello")

    **Captures Lambda contextual runtime info and logs incoming request**

        from aws_lambda_powertools import Logger

        logger = Logger(service="payment")

        @logger.inject_lambda_context(log_event=True)
        def handler(event, context):
            logger.info("Hello")

    Returns
    -------
    decorate : Callable
        Decorated lambda handler
    """

    # If handler is None we've been called with parameters
    # Return a partial function with args filled
    if lambda_handler is None:
        logger.debug("Decorator called with parameters")
        return functools.partial(
            self.inject_lambda_context,
            log_event=log_event,
            correlation_id_path=correlation_id_path,
            clear_state=clear_state,
        )

    log_event = resolve_truthy_env_var_choice(
        env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false"), choice=log_event
    )

    @functools.wraps(lambda_handler)
    def decorate(event, context, **kwargs):
        lambda_context = build_lambda_context_model(context)
        cold_start = _is_cold_start()

        if clear_state:
            self.structure_logs(cold_start=cold_start, **lambda_context.__dict__)
        else:
            self.append_keys(cold_start=cold_start, **lambda_context.__dict__)

        if correlation_id_path:
            self.set_correlation_id(jmespath.search(correlation_id_path, event))

        if log_event:
            logger.debug("Event received")
            self.info(getattr(event, "raw_event", event))

        return lambda_handler(event, context)

    return decorate
def remove_keys(self, keys: Iterable[str])
Expand source code
def remove_keys(self, keys: Iterable[str]):
    self.registered_formatter.remove_keys(keys)
def set_correlation_id(self, value: Optional[str])

Sets the correlation_id in the logging json

Parameters

value : str, optional
Value for the correlation id. None will remove the correlation_id
Expand source code
def set_correlation_id(self, value: Optional[str]):
    """Sets the correlation_id in the logging json

    Parameters
    ----------
    value : str, optional
        Value for the correlation id. None will remove the correlation_id
    """
    self.append_keys(correlation_id=value)
def structure_logs(self, append: bool = False, **keys)

Sets logging formatting to JSON.

Optionally, it can append keyword arguments to an existing logger so it is available across future log statements.

Last keyword argument and value wins if duplicated.

Parameters

append : bool, optional
append keys provided to logger formatter, by default False
Expand source code
def structure_logs(self, append: bool = False, **keys):
    """Sets logging formatting to JSON.

    Optionally, it can append keyword arguments
    to an existing logger so it is available across future log statements.

    Last keyword argument and value wins if duplicated.

    Parameters
    ----------
    append : bool, optional
        append keys provided to logger formatter, by default False
    """
    # There are 3 operational modes for this method
    ## 1. Register a Powertools Formatter for the first time
    ## 2. Append new keys to the current logger formatter; deprecated in favour of append_keys
    ## 3. Add new keys and discard existing to the registered formatter

    # Mode 1
    log_keys = {**self._default_log_keys, **keys}
    is_logger_preconfigured = getattr(self._logger, "init", False)
    if not is_logger_preconfigured:
        formatter = self.logger_formatter or LambdaPowertoolsFormatter(**log_keys)  # type: ignore
        return self.registered_handler.setFormatter(formatter)

    # Mode 2 (legacy)
    if append:
        # Maintenance: Add deprecation warning for major version
        return self.append_keys(**keys)

    # Mode 3
    self.registered_formatter.clear_state()
    self.registered_formatter.append_keys(**log_keys)